PASSENGER ELEVATOR
(COMPACT MACHINE ROOM SYSTEM)
Series-IP/AP Version2
Series-IP

Eco Changes is the Mitsubishi Electric Group’s environmental statement,
and expresses the Group’s stance on environmental management.
Through a wide range of businesses, we are helping contribute to the
realization of a sustainable society.

Visit our website at:
http://www.mitsubishielectric.com/elevator/

NexWay-S
2nd Edition
Based on our policy, “Quality in Motion”, we provide elevators and escalators that will satisfy our customers with high levels of comfort, efficiency, ecology and safety.

Principle

We strive to be green in all of our business activities.

We take every action to reduce environmental burden during each process of our elevators’ and escalators’ lifecycle.

Efficiency

Mitsubishi Elevator systems and building management systems are always evolving, helping achieve our goal of being the No.1 brand in quality. In order to satisfy customers in all aspects of comfort, efficiency and safety while realizing a sustainable society, quality must be of the highest level in all products and business activities, while priority is place on consideration for the environment. As the times change, Mitsubishi Elevator promises to utilize the collective strengths of its advanced and environmental technologies to offer its customers safe and reliable products while contributing to society.

Contents

- **Green Technology** 3–4
 Efficiently using resources and minimizing environmental burden through leading-edge technologies.
- **Variable Traveling Speed Elevator System** 5–6
 An elevator that travels faster according to the number of passengers, reducing waiting and traveling time.
- **Compact Machine Room** 7–8
 The machine room area is the same as that of a hoistway, maximizing available space in the building.
- **Group Control** 9–10
 Advanced group control systems enhance transport efficiency and reduce passenger waiting time through optimum car allocation.

<table>
<thead>
<tr>
<th>Application</th>
<th>NexWay-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: The applicable range of the rated capacity may differ depending on the manufacturing factory, please consult our local agents for details.</td>
<td></td>
</tr>
</tbody>
</table>
SUSTAINABLE ENERGY USE

Mitsubishi Electric’s leading-edge technologies have made it possible for elevators to conserve energy. Our Regenerative Converter makes the most of power generated by the traction machine. Additionally, thanks to the joint-lapped core in permanent magnet (PM) motor and energy-saving features, the elevators use energy more wisely and efficiently.

Efficient use of power

Elevators usually travel using power from a power supply (powered operation); however, when they travel down with a heavy car load or up with a light car load (regenerative operation), the traction machine functions as a power generator. Although the power generated during traction machine operation is usually dissipated as heat, the Regenerative Converter transmits the power back to the distribution transformer and feeds it into the electrical network in the building along with electricity from the power supply. Compared to the same type of elevator without a regenerative converter, this system provides an energy-saving effect of up to 35%. (Reduction in CO₂ emissions: 1400 kg/year)

In addition, the regenerative converter has the effect of decreasing harmonic currents.

Regenerative Converter (Optional)

Energy-saving Features

- **Curbing energy consumption**
 Mitsubishi Electric offers features that help to reduce the energy consumption of elevators.

- **Energy-saving Operation**
 - **Number of Cars (ESO-N) (Optional for ŠAI-22)**
 The number of service cars is automatically reduced to some extent without affecting passenger waiting time.

 - **Allocation Control (ESO-W) (ΣAI-2200C only)**
 Based on each elevator’s potential energy consumption, the system selects the elevator that best balances operational efficiency and energy consumption.

- **Car Light/Fan Shut Off**
 - **Automatic (CLO-A/CFO-A)**
 The car lighting/ventilation fan is automatically turned off if there are no calls for a specified period.

Joint-lapped Core in Permanent Magnet (PM) Motor

Smaller carbon footprint

The joint-lapped core built in the PM motor of the traction machine features flexible joints. The iron core can be like a hinge, which allows coils to be wound around the core more densely, resulting in improved motor efficiency and compactness. High-density magnetic field is produced, enabling lower use of energy and resources and reduced CO₂ emissions.
Variable Traveling Speed Elevator System (VSE) (Optional)

With Mitsubishi Electric's industry-first Variable Traveling Speed Elevator System, an elevator can travel faster than its rated speed according to the number of passengers, ultimately reducing waiting and traveling time.

The Variable Traveling Speed Elevator System allows elevators to travel faster than their rated speed depending on the number of passengers in the car (rapid mode). When the weight is well-balanced between the car and the counter-weight, the traction machine does not need its full power to make the elevator travel at the rated speed. Thus, utilizing the unused power of the traction machine, the elevator can travel faster. Its efficient transport reduces frustratingly long waiting and traveling time. VSE is a solution for users seeking time-savings in elevator travel.

According to Mitsubishi Electric's simulation, waiting time can be reduced up to approximately 12% when VSE is applied. Traveling time can be reduced by approximately 25% when the elevator travels from the bottom to the top floor directly under rapid mode in VSE.

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Car load (%)</th>
<th>Waiting time reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6 m/sec</td>
<td>0-10%</td>
<td>12%</td>
</tr>
<tr>
<td>2.0 m/sec</td>
<td>10-20%</td>
<td>25%</td>
</tr>
</tbody>
</table>

*The above diagram shows VSE system of elevator with the rated speed 1.6 m/sec.

<table>
<thead>
<tr>
<th>Maximum Speed and Car Load</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Car load (%)</th>
<th>Waiting time reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td>12%</td>
</tr>
<tr>
<td>10-20%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Note: *The Variable Traveling Speed Elevator System is applicable to elevators with rated speeds of 1.6m/sec, 1.75m/sec and 2.0m/sec and the rated capacity of 750kg to 1350kg.*

The screen design for rapid mode differs slightly depending on car operating panel type.
Through the development of the Compact Gearless Traction Machine and Compact Control Panel, Mitsubishi Electric has successfully reduced the machine room area to that of hoistway*, where the machine room used to require an area twice as large as that of hoistway. It offers the most advanced elevator features without requiring a large machine room, thus maximizing the use of building space.

Example of Space-saving

Compact PM Gearless Traction Machine

Mitsubishi Electric was the first company to replace induction motors with its highly sophisticated PM (permanent magnet) motors for high-speed and super high-speed elevators.

The extremely thin PM motor manufactured using Mitsubishi Electric’s unique stator core technology – Joint-lapped Core* in Permanent Magnet (PM) Motor – has dramatically reduced not only the size of traction machines but also energy consumption.

Furthermore, the PM motor suppresses harmonic noise and torque ripple, providing greater riding comfort.

Compact Control Panel

The control panel that drives the PM motor has also been reduced in size. Incorporating the most advanced, low-loss IGBT (Insulated Gate Bipolar Transistor) into an optimal design, the power unit has decreased in size significantly, making the control panel itself smaller than previous models. The functions and performance of this Compact Control Panel remain unchanged.

The VVVF Inverter Control delivers smooth, high-precision control of the traction machine. A combination of these state-of-the-art components contributes to significant power savings, while achieving the desired functions and performance of the control panel.

Notes:

*1: The area of the machine room may have to be larger than that of the hoistway in case of (a), (b) and/or (c) below.
(a) An optional feature that requires a panel(s), in addition to the control panel, is requested.
(b) The car interior width (AA) is less than 1600mm, and the entrance width (JJ) is less than 900mm for 2-panel center opening (CO) or 1100mm for 2-panel side opening (2S).
(c) The counterweight is installed in a side drop position.

*2: The area of the machine room can be reduced approximately 9m² when the rated capacity is 1050kg and the rated speed is 1.75m/sec. The area may differ depending on the conditions. *Please refer to page 4 for details.

Dynamic Rule-set Optimizer
Selects optimum car allocation through rule-set simulations
Based on real traffic data, passenger traffic is predicted every few minutes. According to the prediction, real-time simulation selects the best rule-set (multiple rules have been set as car allocation patterns), which optimizes transport efficiency.

Destination Oriented Prediction System (DOAS-S) (Optional)
Allocates passengers to cars depending on destination floors
When a passenger enters a destination floor at a hall, the hall operating panel immediately indicates which car will serve the floor. Because the destination floor is already registered, the passenger does not need to press a button in the car. Furthermore, dispersing passengers by destination prevents congestion in cars and minimizes their waiting and traveling time.

Cooperative Optimization Assignment
Forecasts a near-future hall call to reduce long waits
When a hall call is registered, the algorithm assumes near-future calls that could require long waits. Through evaluation of the registered hall call and the forecasted call, the best car is assigned. All cars work cooperatively for optimum operation.
Features (1/2)

EMERGENCY OPERATIONS AND FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movable Emergency Landing Device (MELD)</td>
<td>Upon power failure, is equipped with the function automatically moves and stops at the nearest floor using a dead battery, and the doors open to facilitate the safe evacuation of passengers. (Maximum allowable floor to floor distance: 12m (Rated speed: 1.6m/sec), 20m (Rated speed: 2.5m/sec) on board)</td>
</tr>
<tr>
<td>Operation by Emergency Power Source — Automatic/Manual (OPS)</td>
<td>Upon power failure, predetermined mode, use the building’s emergency power supply to move to a specified floor, where the doors then open to facilitate the safe evacuation of passengers. When all cars have arrived, predetermined cars resume normal operation.</td>
</tr>
<tr>
<td>Fire Emergency Return (FER)</td>
<td>Upon activation of a key switch or in the building’s sensors, all cars are canceled, all cars immediately return to a specified evacuation floor and the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Firefighters' Emergency Operation (FE)</td>
<td>During fire, whether the operation switch is activated, the car calls of a specified car and all hall cars are canceled and the car immediately returns to a predetermined floor. The car then responds only to calls which facilitate fire-fighting and rescue operations.</td>
</tr>
<tr>
<td>Earthquake Emergency Return (EER)</td>
<td>Upon activation of primary or secondary wave sensors, all cars stop at the nearest floor, and park there with the doors open to facilitate the safe evacuation of passengers.</td>
</tr>
<tr>
<td>Supervisory Panel (WP)</td>
<td>Each elevator’s status and operation can be remotely monitored and controlled through a panel installed in a building’s supervisory room, etc.</td>
</tr>
<tr>
<td>Monitoring System (EER-P/EER-S)</td>
<td>Each elevator’s status and operation can be remotely monitored and controlled using an advanced Web-based technology that provides an interface through personal computers. Special optional features such as preparation of traffic statistics and analysis are also available.</td>
</tr>
<tr>
<td>Mitsubishi Car Lighting (MCL)</td>
<td>Car lighting which turns on immediately when power fails, providing minimum level of lighting within the car. (Choice of dry-cell battery or trickle-charge battery)</td>
</tr>
</tbody>
</table>

Door Operation Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Sensor Self-diagnosis (DSGA)</td>
<td>Failure of non-contact door sensors is checked automatically, and if a problem is diagnosed, the door-closing timing is delayed and the closing speed is reduced to maintain elevator service and ensure passenger safety.</td>
</tr>
<tr>
<td>Automatic Door Speed Control (DSAC)</td>
<td>Door-travel speed, which can depend on the type of hall door monitored to adjust the door speed, thereby making the door speed constant throughout all floors.</td>
</tr>
<tr>
<td>Automatic Door-open Time Adjustment (ADOA)</td>
<td>The time doors are open can be automatically adjusted depending on whether the stop was called from the hall or the car, to allow smooth boarding of passengers or loading of baggage.</td>
</tr>
<tr>
<td>Reopen with Hall Button (ROHB)</td>
<td>Closing doors can be reopened by pressing the hall button corresponding to the traveling direction of the car.</td>
</tr>
<tr>
<td>Repeated Door-close (ROC)</td>
<td>Should an obstacle prevent the doors from closing, the doors will repeatedly open and close until the obstacle is cleared from the doorway.</td>
</tr>
<tr>
<td>Door Nudging Feature With Master (NOD)</td>
<td>A buzzer sounds and the doors slowly close when they have remained open for longer than the preset period. With AAN-B or AAN-G, a beep and voice guidance sound instead of the buzzer.</td>
</tr>
<tr>
<td>Door Load Detector (DLD)</td>
<td>When elevator door load has been detected while opening or closing, the doors immediately reverse.</td>
</tr>
<tr>
<td>Safety Ray (SDR)</td>
<td>1-Beam One or two infrared light beams cover the full width of the doors as they close to detect obstacles or objects. (Cannot be combined with the multi-beam door sensor or MBS feature.)</td>
</tr>
<tr>
<td>2-Beam</td>
<td>—</td>
</tr>
<tr>
<td>Extended Door-open Button (ODOB-EB)</td>
<td>When the button inside a car is pressed, the doors will remain open longer to allow loading and unloading of baggage, a stretcher, etc.</td>
</tr>
<tr>
<td>Safety Door Edge (SDE)</td>
<td>One side and both sides (CDL doors only) Sensitive door edge (s) detect passengers or objects during door closing. (Cannot be combined with the MBS feature.)</td>
</tr>
<tr>
<td>Electronic Doorman (EDM)</td>
<td>Door open time is minimized using safety relay multi-beam door sensor that detects passengers boarding or exiting.</td>
</tr>
<tr>
<td>Multi-beam Door Sensor</td>
<td>Multiple infrared light beams cover a door height of 1800mm to detect obstacles or objects as the doors close. (Cannot be combined with the SR or MBS feature.)</td>
</tr>
<tr>
<td>Multi-beam Door Sensor — Signal Type (MBS)</td>
<td>Multiple infrared light beams cover a door height of approximately 1800mm to detect passengers or objects as the doors close. Additionally, additional LED lights on the door edge indicate the door opening/closing and the presence of an obstacle between the doors. (Cannot be combined with any of the following features: 1-0E, OR or multi-beam door sensor.)</td>
</tr>
</tbody>
</table>

Hall Motion Sensor (HMS) | Infrared light is used to scan a 3D area near open doors to detect passengers or objects. |

Notes:
- *(1) BC — 1-car selective collective — Standard, 2C-BC (2-car group control) — Optional*
- *(1A — 2-car group control system) — Optional, 2A-2C-BC (3 to 8-car group control system) — Optional*
- *(2) — Standard, *(2) — Optional, *(n) — Not applicable*
- *(1) Please consult our local agents for the production terms, etc.*
- *(2) Optional feature when the rated capacity is from 1600kg to 2500kg*
- *(3) Standard feature when the rated capacity is from 1600kg to 2500kg.*

Car Design Example

- Walls — SUS-HL
- Transom panel — SUS-HL
- Doors — SUS-HL
- Front return panels — SUS-HL
- Kickplate — Aluminum
- Flooring — PR803

Car operating panel

- CBV1-C760
 - Segment LED indicators
 - Tactile button with yellow-orange lighting

Hall Design Example

- Jamb — SUS-HL
- Doors — SUS-HL
- Hall position indicator and button — PVI-A710N

Hall position indicators and buttons

- Metal-like resin faceplates
 - PVI-A710N
 - PVI-A720N

Notes:
- *(1) Maximum number of floors: 22 floors*
- *(2) Some letters of the alphabet are not available. Please consult our local agents for details.*
FEATURES:

OPERATIONAL AND SERVICE FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe Landing (1FL)</td>
<td>To have stopped between floors due to some equipment malfunction, the controller checks the floor, and if it is considered safe to move the car, the car will move to the nearest floor as a two-step operation and the doors will open.</td>
</tr>
</tbody>
</table>

GROUP CONTROL FEATURES

- **(PCNV)**
 - Regenerative Converter
 - Elevator System (VSE)
 - Switch (HOS/HOS-T)

SPECIAL FEATURES

- **Card Reader Type (NSCR-C)**
- **Release for Car Call — Automatic (FCC-A)**
- **Independent Service (IND)**
 - **(GCBK)**
 - **Control Microprocessor**
 - **Backup Operation for Group**
 - **— Automatic (CFO-A)**
 - **Registration (FSAT)**
 - **Safe Landing (SFL)**
 - **Up Peak Service (UPS)**
 - **Intense Up Peak (IUP)**

OTHER FEATURES

- **Feature Description 3C to 8C**
 - According to the number of passengers in the car, the car travels faster than the rated speed.
 - Exclusive operation where an elevator can be operated using the buttons and switches located and not accept any calls until independent operations begin. The car will park on that floor with the doors open.
 - Using a key switch on the supervisory panel, a car can be withdrawn from group control and called to a specified floor. The car will serve the floor. The passenger does not need to press a button in the car. Dispersing passengers by destination prevents congestion in the cars and minimizes their waiting and traveling time. (Cannot be combined with hall position indicators.)

- **Feature Description 1C to 2BC**
 - When DOAS-S is applied, SR or multi-beam door sensor should be installed.

SIGNAL AND DISPLAY FEATURES

- **Hall Call Button (HCB)**
 - A door button, which corresponds to a car’s service direction, flashes to indicate that the car will soon arrive.

- **Basic Announcement (AAN-B)**
 - A synthetic voice and/or buzzer alert passengers inside a car that the elevator operation has been temporarily interrupted by overload or power failure. (Voice available only in English.)

- **Car Arrival Chime (AAC)**
 - Electronic chimes sound to indicate that a car will soon arrive. (The chimes are mounted either on the top and bottom of the car, or in each hall.)

- **Car Button Click Type (ACB)**
 - A click-type car button which emits an electronic beep sound when pressed to indicate that the call has been registered.

- **Immediate Position Indication (AI-I)**
 - When a passenger has registered a hall call, the best car to respond to that call is immediately selected, the corresponding hall lanterns light up and a chime sounds once to indicate which doors will open.

- **Second Car Prediction (TCP)**
 - When a hall is crowded to the extent that one car cannot accommodate all waiting passengers, a hall lantern will light up to indicate the next car and its predicted arrival.

- **Voice Guidance System (AAGI)**
 - Information or elevator service such as the current floor or service direction is given to the passengers inside a car. (Voice guidance available only in English.)

- **Auxiliary Car Operating Panel (ACCP)**
 - An additional car control panel which can be installed for large-capacity elevators, heavy traffic elevators, etc.

- **Inter-communication System (ITP)**
 - A system which allows communication between passengers inside a car and the building personnel.

- **Car LCD Position Indicator (CDI)**
 - This 5.7-inch LCD car operating panels shows the date and time, car position, travel direction and elevator status messages.

- **Hall LCD Position Indicator (HDI)**
 - This 5.7-inch LCD car operating panels shows the date and time, car position, travel direction and elevator status messages.

- **Car Information Display (CDI)**
 - This LCD (10.4- or 15-inch) for car front return panels shows the date and time, car position, travel direction and elevator status messages.

- **Hall Information Display (HUD)**
 - The LCD (10.4- or 15-inch) for elevators shows the date and time, car position, travel direction and elevator status messages.

NOTES:

- 1C-2BC (1-car selective collective) - Standard, 2C-2BC (2-car group control) - Optional, 3C to 4C - Optional, 3 to 8C - Optional
- 1413 (3 to 4-car group control system) - Standard, 121300C (3 to 8-car group control system) - Optional
- 1413 - Standard (1-car) - Optional, 121300C - Standard (2-car) - Optional
- Notes: Please refer to page 3.
Basic Specifications

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Door type</th>
<th>Counterweight position</th>
<th>Car internal dimensions (mm)</th>
<th>Entrance width (mm)</th>
<th>Minimum hoistway dimensions (mm)</th>
<th>Rated speed (m/sec)</th>
<th>Maximum travel (m) TR</th>
<th>Minimum number of stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>CO</td>
<td>Rear</td>
<td>1400x1350</td>
<td>900</td>
<td>190x120</td>
<td>2.5</td>
<td>120 TR</td>
<td>2470</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>CO</td>
<td>Rear</td>
<td>1600x1400</td>
<td>1000</td>
<td>240x190</td>
<td>1.0</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>CO</td>
<td>Rear</td>
<td>2000x1500</td>
<td>1100</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>CO</td>
<td>Rear</td>
<td>2000x1600</td>
<td>1080</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P10</td>
<td>10</td>
<td>750</td>
<td>CO</td>
<td>Rear</td>
<td>1400x1300</td>
<td>900</td>
<td>190x120</td>
<td>2.5</td>
<td>120 TR</td>
<td>2470</td>
</tr>
<tr>
<td>P11</td>
<td>11</td>
<td>825</td>
<td>CO</td>
<td>Rear</td>
<td>1400x1350</td>
<td>900</td>
<td>190x120</td>
<td>2.5</td>
<td>120 TR</td>
<td>2470</td>
</tr>
<tr>
<td>P12</td>
<td>12</td>
<td>900</td>
<td>CO</td>
<td>Rear</td>
<td>1600x1350</td>
<td>1000</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P14</td>
<td>14</td>
<td>1050</td>
<td>CO</td>
<td>Rear</td>
<td>1600x1400</td>
<td>1000</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P16</td>
<td>16</td>
<td>1200</td>
<td>CO</td>
<td>Rear</td>
<td>1800x1500</td>
<td>1000</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P17</td>
<td>17</td>
<td>1275</td>
<td>CO</td>
<td>Rear</td>
<td>2000x1500</td>
<td>1100</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
<tr>
<td>P18</td>
<td>18</td>
<td>1350</td>
<td>CO</td>
<td>Rear</td>
<td>2000x1600</td>
<td>1080</td>
<td>240x190</td>
<td>1.75</td>
<td>120 TR</td>
<td>3200</td>
</tr>
</tbody>
</table>

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Maximum travel (m) TR</th>
<th>Minimum number of stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>1.6</td>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>1.75</td>
<td>105</td>
<td>36</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>50</td>
<td>36</td>
</tr>
</tbody>
</table>

Specifications for Variable Traveling Speed Elevator System (Optional)

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Traveling speed (m/sec)</th>
<th>Minimum overhead (mm) OH</th>
<th>Minimum pit depth (mm) PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>~1050 (kg)</td>
<td>~1350 (kg)</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>~1050 (kg)</td>
<td>~1350 (kg)</td>
</tr>
<tr>
<td>1.75</td>
<td>1.75</td>
<td>~1050 (kg)</td>
<td>~1350 (kg)</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>~1050 (kg)</td>
<td>~1350 (kg)</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>~1050 (kg)</td>
<td>~1350 (kg)</td>
</tr>
</tbody>
</table>

Notes:

1. When the car size is "1100x2100" of code number P14, the maximum height is 105m.
2. When the car size is "1100x2100" of code number P14 with 1-Door 2-Gate or "1350x2150" of code number P17 with 1-Door 2-Gate, the maximum height is 120m.
3. When the car size is "1100x2100" of code number P14 with 1-Door 1-Gate, the maximum height is 105m.
4. When the code number is P14, the door type is CO, the elevator is 1-Door 1-Gate, and the travel is 105m or more but less than 130m, the minimum pit depth requires 1810mm.
5. When the code number is P17, the door type is 2S, the elevator is 1-Door 1-Gate, and the travel exceeds 105m or more but less than 130m, the minimum pit depth requires 1780mm.
6. When the car size is "1100x2100" of code number P14 with 1-Door 1-Gate, the minimum hoistway dimensions (AH x BH) TR exceeds 105m or more, please consult our local agents for details.
7. The value varies when the elevator is 1-Door 1-Gate and maximum travel is 80 or 100m, please consult our local agents for details.
8. The value varies when the machine room height is 2500mm, please consult our local agents for details.
9. Some specifications require more than 2000mm as a minimum floor height. Please consult our local agents for the appropriate machine room height.
10. Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 4000mm, and the elevator is 1-Door 2-Gate.

Applicable Standards

The newVey-S Series/IP Version2 and Series/IP comply with the EN81-1 or GB code. For details of compliance with other national regulations, please consult our local agents.
Basic Specifications (750kg to 1350kg)

1-Door 1-Gate

Hoistway Plan

Hoistway Section

1-Door 2-Gate

Hoistway Plan

Hoistway Section

Basic Specifications (750kg to 1350kg)
Basic Specifications (1600kg to 2500kg)

Horizontal Dimensions

<table>
<thead>
<tr>
<th>Code number</th>
<th>Number of persons</th>
<th>Rated capacity (kg)</th>
<th>Door type</th>
<th>Counterweight position</th>
<th>Car internal dimensions (mm) AxBxH</th>
<th>Entrance width (mm) J</th>
<th>Minimum hoistway dimensions (mm) AHxBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>P21</td>
<td>21</td>
<td>1600</td>
<td>CO</td>
<td>Rear</td>
<td>2000x1750</td>
<td>1100</td>
<td>2540x2460</td>
</tr>
<tr>
<td>P24</td>
<td>24</td>
<td>1800</td>
<td>CO</td>
<td>Rear</td>
<td>2100x1800</td>
<td>1100</td>
<td>2600x2550</td>
</tr>
<tr>
<td>P27</td>
<td>27</td>
<td>2025</td>
<td>CO</td>
<td>Rear</td>
<td>2100x1950</td>
<td>1200</td>
<td>2640x2740</td>
</tr>
<tr>
<td>P30</td>
<td>30</td>
<td>2250</td>
<td>CO</td>
<td>Rear</td>
<td>2300x1950</td>
<td>1200</td>
<td>2800x2750</td>
</tr>
<tr>
<td>P33</td>
<td>33</td>
<td>2500</td>
<td>CO</td>
<td>Rear</td>
<td>2300x2130</td>
<td>1200</td>
<td>2800x2930</td>
</tr>
</tbody>
</table>

Notes:
- The contents of this table are applied to standard specifications only. Please consult our local agents for other specifications.
- Rated capacity is calculated at 75kg per person, as required by the EN81-1 and GB code.
- CO: 2-panel center opening doors
- Minimum hoistway dimensions (AH and BH) shown in the table are after waterproofing of the pit and do not include plumb tolerance.
- Minimum hoistway dimensions (AH and BH) should be increased if fireproof landing door is required.

Vertical Dimensions

<table>
<thead>
<tr>
<th>Rated speed (m/sec)</th>
<th>Maximum travel (m)</th>
<th>Maximum number of stops</th>
<th>Counterweight position</th>
<th>Rated capacity (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>70</td>
<td>32</td>
<td>Rear</td>
<td>4750</td>
</tr>
<tr>
<td>1.0</td>
<td>45</td>
<td>45</td>
<td>Rear</td>
<td>4950</td>
</tr>
<tr>
<td>1.6</td>
<td>45</td>
<td>45</td>
<td>Rear</td>
<td>4950</td>
</tr>
<tr>
<td>1.75</td>
<td>45</td>
<td>45</td>
<td>Rear</td>
<td>4950</td>
</tr>
</tbody>
</table>

Notes:
- *1: Some specifications require more than 2500mm as a minimum machine room height. Please consult our local agents for the appropriate machine room height.
- *2: Some specifications require more than 2500mm as a minimum floor height. Please consult our local agents if the floor height is less than entrance height HH + 700mm, and the elevator is 1-Door 2-Gate.

Applicable Standards

The NexWay-S Series-IP complies with the EN81-1 or GB code. For details of compliance with other national regulations, please consult our local agents.
Work Not Included in Elevator Contract

The following items are excluded from Mitsubishi Electric’s elevator installation work, and are therefore the responsibility of the building owner or general contractor:

• Construction of the elevator machine room with proper beams and slabs, equipped with a lock, complete with illumination, ventilation and waterproofing.
• Access to the elevator machine room sufficient to allow passage of the control panel and traction machine.
• Architectural finishing of the machine room floor, and the walls and floors in the vicinity of the entrance hall after installation has been completed.
• Construction of an illuminated, ventilated and waterproofed elevator hoistway.
• A ladder to the elevator pit.
• The provision of cutting the necessary openings and joists.
• Separate beams, when the hoistway dimensions markedly exceed the specifications, and intermediate beams when two or more elevators are installed.
• All other work related to building construction.
• The machine room power-receiving panel and the electrical wiring for illumination, plus the electrical wiring from the electrical room to the power-receiving panel.
• The laying of conduits and wiring between the elevator pit and the terminating point for the devices installed outside the hoistway, such as the emergency bell, intercom, monitoring and security devices, etc.
• The power consumed in installation work and test operations.
• All the necessary building materials for grouting in of brackets, bolts, etc.
• The provision and subsequent alteration as required, and eventual removal of the scaffolding as required by the elevator contractor, and any other protection of the work as may be required during the process.
• The machine room power-receiving panel and the electrical wiring for illumination, plus the electrical wiring from the electrical room to the power-receiving panel.
• The security system, such as a card reader, connected to Mitsubishi Electric’s elevator controller, when supplied by the building owner or general contractor.

* Work responsibilities in installation and construction shall be determined according to local laws. Please consult our local agents for details.

Elevator Site Requirements

• The temperature of the machine room and elevator hoistway shall be below 40˚C.

• The following conditions are required for maintaining elevator performance.
 a. The relative humidity shall be below 90% on a monthly average and below 95% on a daily average.
 b. Prevention shall be provided against icing and condensation occurring due to a rapid drop in the temperature in the machine room and elevator hoistway.
 c. The machine room and the elevator hoistway shall be finished with mortar or other materials so as to prevent concrete dust.

• Voltage fluctuation shall be within a range of ±5% to ±10%.

Ordering Information

Please include the following information when ordering or requesting estimates:

• The desired number of units, speed and loading capacity.
• The number of stops or number of floors to be served.
• The total elevator travel and each floor-to-floor height.
• Operation system.
• Selected design and size of car.
• Entrance design.
• Signal equipment.
• A sketch of the part of the building where the elevators are to be installed.
• The voltage, number of phases, and frequency of the power source for the motor and lighting.
Eco Changes is the Mitsubishi Electric Group’s environmental statement, and expresses the Group’s stance on environmental management. Through a wide range of businesses, we are helping contribute to the realization of a sustainable society.

Visit our website at: http://www.mitsubishielectric.com/elevator/

⚠️ Safety Tips: Be sure to read the instruction manual fully before using this product.